On Mayer-Vietoris functors and algebraic K-theory
نویسندگان
چکیده
منابع مشابه
Exactness of the Mayer-Vietoris Sequence in Homotopy Type Theory
∗This research was sponsored in part by the National Science Foundation under grant numbers CCF-1116703 and CCF-1445995 (REU). The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. See http://homotopytype...
متن کاملMulticore Homology via Mayer Vietoris
In this work we investigate the parallel computation of homology using the Mayer-Vietoris principle. We present a two stage approach for parallelizing persistence. In the first stage, we produce a cover of the input cell complex by overlapping subspaces. In the second stage, we use this cover to build the Mayer-Vietoris blowup complex, a topological space, which organizes the various subspaces ...
متن کاملSpectral Mackey Functors and Equivariant Algebraic K - Theory ( Ii )
We study the “higher algebra” of spectral Mackey functors, which the first named author introduced in Part I of this paper. In particular, armed with our new theory of symmetric promonoidal ∞-categories and a suitable generalization of the second named author’s Day convolution, we endow the∞-category of Mackey functors with a wellbehaved symmetric monoidal structure. This makes it possible to s...
متن کاملOn Determinant Functors and K-theory
In this paper we introduce a new approach to determinant functors which allows us to extend Deligne’s determinant functors for exact categories to Waldhausen categories, (strongly) triangulated categories, and derivators. We construct universal determinant functors in all cases by original methods which are interesting even for the known cases. Moreover, we show that the target of each universa...
متن کاملMayer-vietoris Sequences in Stable Derivators
We show that stable derivators, like stable model categories, admit Mayer-Vietoris sequences arising from cocartesian squares. Along the way we characterize homotopy exact squares, and give a detection result for colimiting diagrams in derivators. As an application, we show that a derivator is stable if and only if its suspension functor is an equivalence.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1971
ISSN: 0021-8693
DOI: 10.1016/0021-8693(71)90127-x